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The Description of Joint Quantum Entities and the
Formulation of a Paradox†
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We formulate a paradox in relation to the description of a joint entity consisting
of two subentities by standard quantum mechanics. We put forward a proposal
for a possible solution, entailing the interpretation of ‘density states’ as ‘pure
states.’ We explain where the inspiration for this proposal comes from and how
its validity can be tested experimentally. We discuss the consequences of the
proposal for quantum axiomatics.

1. FORMULATION OF THE PARADOX

Quantum mechanics, after more than 70 years, still poses fundamental
problems of understanding. Many physicists believe these problems are ‘only’
problems of ‘physical interpretation’ of the mathematically well defined
‘standard formalism.’ In this paper we will show that this is not necessarily
so. We will show that the problem of quantum mechanics connected to the
existence of nonproduct states in the description of the joint entity of two
quantum entities may well indicate that a change of the standard formalism
is necessary.

By the ‘standard formalism’ of quantum mechanics we mean the formal-
ism as exposed, for example, in von Neumann (1932), and we will refer to
it by SQM. Often the name ‘pure state’ is used to indicate a state represented
by a ray of the Hilbert space. We will use it, however, in the physical sense:
a ‘pure state’ of an entity represents the reality of this entity. As a consequence
it is natural to demand that an entity ‘exists’ if and only if at any moment
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it is in one and only one ‘pure state.’ Let us formulate this as a principle,
since it will play a major role in our analysis.

Physical Principle 1. If we consider an entity, then this entity ‘exists’
at a certain moment iff it ‘is’ in one and only one pure state at that moment.

We denote pure states of an entity S by means of symbols p, q, r, . . .
and the set of all pure states by S. We mention that in Aerts (1984a, 1999a),
where aspects of the problem that we investigate in the present paper are
analyzed, a ‘pure state’ is called a ‘state.’

A state represented by a ray of the Hilbert space will be called a ‘ray
state.’ We denote rays by symbols x̄, ȳ, . . . , where x, y, . . . P *, and we
denote by px the ‘ray state’ represented by the ray x̄. To each ray x̄, x P *,
corresponds one and only one ray state px. One of the principles of standard
quantum mechanics is that ‘pure states’ are ‘ray states.’

SQM Principle 1. Consider an entity S described by SQM in a Hilbert
space *. Each ray state px , x P *, is a pure state of S, and each pure state
of S is of this form.

The problem that we want to consider in this paper appears in the SQM
description of the joint entity S of two quantum entities S1 and S2.

SQM Principle 2. If we consider two quantum entities S1 and S2 described
by SQM in Hilbert spaces *1 and *2, then the joint quantum entity S
consisting of these two quantum entities is described by SQM in the tensor
product Hilbert space *1 ^ *2. The subentities S1 and S2 are in ray states
px1 and px2, with x1 P *1 and x2 P *2, iff the joint entity S is in a ray state
px1^x2.

In relation to the situation of a joint entity consisting of two subentities,
there is another physical principle we generally imagine to be satisfied.

Physical Principle 2. If an entity is the joint entity of two subentities, then
the entity exists at a certain moment iff the subentities exist at that moment.

Let us introduce the concept of ‘nonproduct vectors’ of the tensor prod-
uct. For z P *1 ^ *2 we say that z is a nonproduct vector iff ∃⁄ z1 P *1,
z2 P *2: z 5 z1 ^ z2. We are now ready to formulate the theorem that points
out the paradox we want to bring forward.

Theorem 1. Physical Principle 1, Physical Principle 2, SQM Principle
1, and SQM Principle 2 cannot be satisfied together.

Proof. Suppose the four principles are satisfied. This leads to a contradic-
tion. Consider the joint entity S of two subentities S1 and S2 described by
SQM. From SQM Principle 2 it follows that if S1 and S2 are described in
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Hilbert spaces *1 and *2, then S is described in the Hilbert space *1 ^ *2.
Let us consider a nonproduct vector z P *1 ^ *2 and the ray state pz. From
SQM Principle 1 it follows that pz represents a pure state of S. Consider a
moment where S is in state pz. Physical Principle 1 implies that S exists at
that moment and from Physical Principle 2 we infer that S1 and S2 also exist
at that moment. Physical Principle 1 then implies that S1 and S2 are respectively
in pure states p1 and p2. From SQM Principle 1 it follows that there are two
rays z̄1 and z̄2, z1 P *1 and z2 P *2, such that p1 5 pz1 and p2 5 pz2. From
SQM Principle 2 it then follows that S is in the state pz1^z2, which is not pz

since the ray generated by z1 ^ z2 is different from z̄. Since both pz and
pz1^z2 are pure states, this contradicts Physical Principle 1.

2. AN ALTERNATIVE SOLUTION TO THE PARADOX

The fundamental problems of the SQM description of the joint entity
of two subentities had already been remarked a long time ago. The Einstein–
Podolsky–Rosen paradox and later research on the Bell inequalities are related
to this difficulty (Einstein et al., 1935; Bell, 1964). It is indeed states like
pz , with z a nonproduct vector, that give rise to the violation of the Bell
inequalities and that generate the typical EPR correlations between the suben-
tities. Most of the attention in this earlier analysis went to the ‘nonlocal’
character of these EPR correlations. The states of type pz are now generally
called ‘entangled’ states. The problem (paradox) related to entangled states
as outlined in Section 1 has often been overlooked, although noticed and
partly mentioned in some texts (e.g., Van Fraassen, 1991, Section 7.3, and
references therein).

The problem of the description of a joint entity has also been studied
within axiomatic approaches to SQM. There it was shown that some of the
axioms that are needed for SQM are not satisfied for certain well-defined
situations of a joint entity consisting of two subentities (Aerts, 1982, 1984a;
Pulmannová, 1983, 1985; Randall and Foulis, 1981). More specifically, it
has been shown in Aerts (1982) that the joint entity of two separated entities
cannot be described by SQM because of two axioms: weak modularity and
the covering law. This shortcoming of SQM is proven to be at the origin of
the EPR paradox (Aerts, 1984b, 1985a, b). It has also been shown that
different formulations of the product within the mathematical categories
employed in the axiomatic structures do not coincide with the tensor product
of Hilbert spaces (Aerts, 1984a; Pulmannová, 1983, 1985; Randall and Foulis,
1981). Again certain axioms, orthocomplementation, covering law, and ato-
micity, cause problems.

All these findings indicate that we are confronted with a deep problem
that has several complicated and subtle aspects. A very extreme attitude would
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be to consider entangled states as artifacts of the mathematical formalism and
hence not really existing in nature. Yet, entangled states are readily prepared
in the laboratory and the corresponding EPR correlations have been detected
in a convincing way. This means that it is very plausible to acknowledge the
existence of entangled states as ‘pure states’ of the joint entity in the sense
of Physical Principle 1.

As a result of earlier research we have always been inclined to believe
that we should drop Physical Principle 2 to resolve the paradox (Aerts, 1984a,
1985a, b; see also Aerts et al., 1999b). This entails considering the subentities
S1 and S2 of the joint entity S as ‘not existing’ if the joint entity is in an
entangled state. We still believe that this is a possible solution to the paradox
and refer, for example, to Valckenborgh (n.d.) and Aerts and Valckenborgh
(n.d.) for further structural elaboration in this direction. In the present paper
we would like to bring forward an alternative solution. To make it explicit
we introduce the concept of ‘density state,’ which is a state represented by
a density operator of the Hilbert space. We denote density operators by
symbols W, V, . . . and the corresponding density states by pW , pV , . . . . To
each density operator W on * corresponds one and only one density state
pW. Within SQM, density states are supposed to represent mixtures, i.e.,
situations of lack of knowledge about the pure state. The way out of the
paradox we propose in the present paper consists in considering the density
states as pure states. Hence, in thin sense, SQM Principle 1 would be false
and replaced by a new principle.

CQM Principle 1. Consider an entity S described in a Hilbert space *.
Each density state pW , where W is a density operator of *, is a pure state
of S, and each pure state of S is of this form.

We call the quantum mechanics that retains all the old principles except
SQM Principle 1, and that follows our new principle CQM Principle 1,
‘completed quantum mechanics’ and refer to it by CQM.

The first argument for our proposal of this solution comes from earlier
work in relation to the violation of Bell inequalities by means of macroscopic
entities (Aerts, 1991a). There we introduced a macroscopic material entity
that entails EPR correlations. Let us briefly describe this entity again to state
our point.

First we represent the spin of a spin-1/2 quantum entity by means of
the elastic sphere model that we have used on several occasions (Aerts, 1986,
1987, 1991a, b, 1993, 1995, 1999a, b), and that we have called the ‘quantum
machine.’ It is well known that the states, ray states as well as density states,
of the spin of a spin-1/2 entity can be represented by the points of a sphere
B in three-dimensional Euclidean space with radius 1 and center 0. Let us
denote the state corresponding to the point w P B by pw. To make the
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representation explicit we remark that each vector w P B can uniquely be
written as a convex linear combination of two vectors v 5 (sin u cos f, sin u
sin f, cos u) and 2v on the surface of the sphere (Fig. 2), i.e., w 5 a ? v
2 b ? v 5 (a 2 b) ? v, with a, b P [0,1] and a 1 b 5 1. In this way we
correspond with w the density operator W(w):

W(w) 5 1 a cos2 u
2

1 b sin2 u
2

(a 2 b) sin
u
2

cos
u
2

e2if

(a 2 b) sin
u
2

cos
u
2

eif a sin2 u
2

1 b cos2 u
2
2 (1)

Each density operator can be written in this form and hence the inverse
correspondence is also made explicit. We remark that the ray states, namely
the density operators that are projections, correspond to the points on the
surface of B.

It is much less known that experiments on the spin of a spin-1/2 quantum
entity can be represented within the same picture. Let us denote the direction,
in which the spin will be measured by the diametrically opposed vectors u
and 2u of the surface of B (Fig. 1), and let us consider u as the z direction
of the standard spin representation (this does not restrict the generality of

Fig. 1. A representation of the quantum machine. (a) The particle is in state pw , and the elastic
corresponding to the experiment eu is installed between the two diametrically opposed points
u and 2u. (b) The particle falls orthogonally onto the elastic and sticks to it. (c) The elastic
breaks and the particle is pulled toward the point u, such that (d) it arrives at the point u, and
the experiment eu gets the outcome “up.”
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Fig. 2. A representation of the experimental process. An elastic of length 2, corresponding to
the experiment eu , is installed between u and 2u. The probability m(eu , pw , up) that the particle
ends at point u under influence of the experiment eu is given by the length of the piece of
elastic L1 divided by the total length of the elastic. The probability m(eu , pw , down) that the
particle ends at point 2u is given by the length of the piece of elastic L2 divided by the total
length of the elastic.

our calculation). In this case, in SQM, the spin measurement along u, which
we denote eu , is represented by the self-adjoint operator S 5 1–2 E1 2 1–2 E2 with

E1 5 11 0
0 02, E2 5 10 0

0 12 (2)

being the spectral projections. The SQM transition probabilities, m(eu , pw ,
up), the probability for spin-up outcome if the state is pw , and m(eu , pw ,
down), the probability for spin-down outcome if the state is pw , are then

m(eu , pw , up) 5 tr(W(w) ? E1) 5 a cos2 u
2

1 b sin2 u
2

(3)

m(eu , pw , down) 5 tr(W(w) ? E2) 5 a sin2 u
2

1 b cos2 u
2

Let us now show that, using the sphere picture, we can propose a realizable
mechanistic procedure that gives rise to the same probabilities and can there-
fore represent the spin measurement. Our mechanistic procedure starts by
installing an elastic strip (e.g., a rubber band) of 2 units of length such that
it is fixed with one of its endpoints at u and the other endpoint at 2u (Fig.
1a). Once the elastic is installed, the particle falls from its original place w
orthogonally onto the elastic and sticks to it (Fig. 1b). Then, the elastic breaks
at some arbitrary point. Consequently, the particle, attached to one of the
two pieces of the elastic (Fig. 1c), is pulled to one of the two endpoints u
or 2u (Fig. 1d). Now, depending on whether the particle arrives at u (as in
Fig. 1) or at 2u, we give the outcome ‘up’ or ‘down,’ respectively, to this
experiment eu.

Let us prove that the transition probabilities are the same as those
calculated by SQM. The probability m(eu , pw , up) that the particle ends up
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at point u (experiment eu gives outcome ‘up’) is given by the length of the
piece of elastic L1 divided by the total length of the elastic. The probability
m(eu , pw , down) that the particle ends up at point 2u (experiment eu gives
outcome ‘down’) is given by the length of the piece of elastic L2 divided by
the total length of the elastic. This means that we have

m(eu , pw , up) 5
L1

2
5

1
2

(1 1 (a 2 b) cos u) 5 a cos2 u
2

1 b sin2 u
2

(4)

m(eu , pw , down) 5
L2

2
5

1
2

(1 2 (a 2 b) cos u) 5 a sin2 u
2

1 b cos2 u
2

Comparing (3) and (4), we see that our mechanistic procedure represents the
quantum mechanical measurement of the spin.

To realize the macroscopic model with EPR correlations we consider
two such ‘quantum machine’ spin models where the point particles are con-
nected by a rigid rod, which introduces the correlation. The rigid rod is fixed
and can only turn around its middle point. We will only describe the situation
where we realize a state that is equivalent to the singlet spin state ps , where
s 5 u1 ^ u2 2 u2 ^ u1, and refer to Aerts (1991a) for a more detailed
analysis. Suppose that the particles are in states pw1 and pw2, where w1 and
w2 are, respectively, the centers of the spheres B1 and B2 (Fig. 3) connected
by a rigid rod. We call this state (the presence of the rod included) pw. The
experiment e(u1,u2) consists in performing eu1 in B1 and eu2 in B2 and collecting
the outcomes (up, up), (up, down), (down, up), or (down, down). In Fig. 3
we show the different phases of the experiment. We make the hypothesis
that one of the elastics breaks first and pulls one of the particles up or down.
Then we also make the hypothesis that once one of the particles has reached
one of the outcomes, the rigid connection breaks down. The experiment

Fig. 3. A macroscopic mechanical entity with EPR correlations.
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continues then without connection in the sphere where the elastic is not yet
broken. The joint probabilities can now easily be calculated:

m(e(u1,u2), pw , (up, up)) 5
1
2

sin2 a
2

m(e(u1,u2), pw , (up, down)) 5
1
2

cos2 a
2

(5)

m(e(u1,u2), pw , (down, up)) 5
1
2

cos2 a
2

m(e(u1,u2), pw , (down, down)) 5
1
2

sin2 a
2

where a is the angle between u1 and u2. These are exactly the quantum
probabilities when pw represents the singlet spin state. As a consequence,
our model is a representation of the singlet spin state. This means that we
can put ps 5 pw .

Why does this example inspire us to put forward the hypothesis that
density states are pure states? Well, if we consider the singlet spin state, then
this is obviously a nonproduct state, and hence the states of the subentities
are density states. In fact they are the density states pW1 and pW2, where

W1 5 W2 5 1
1–2 0
0 1–22 (6)

However, the state of the joint entity is clearly not given by the density state
corresponding to the density operator

1
1–2 0
0 1–22 ^ 1

1–2 0
0 1–22 (7)

because this state does not entail correlations. It is due to the presence of
the EPR correlations that the state of the joint entity is represented by a ray
state. In our macroscopic mechanistic model, however, all the states (also
the states of the subentities) are ‘pure states’ and not mixtures (remark that
we use the concept ‘pure state’ as defined in Section 1). If our proposal were
true, namely, if density states as well as ray states in principle represented
pure states, we could also understand why, although the state of the joint
entity uniquely determines the states of the subentities, and hence Physical
Principle 2 is satisfied, the inverse is not true: the states of the subentities
do not determine the state of the joint entity. Indeed, a state of one subentity
cannot contain the information about the presence of an eventual correlation
between the subentities. This way, it is natural that different types of correla-
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tions can give rise to different states of the joint entity, the subentities being
in the same states. This possibility expresses the philosophical principle that
the whole is greater than the sum of its parts, and, as our model, shows it
is also true in the macroscopic world.

Let us now say some words about the generality of the construction that
inspired us for the proposed solution. It has been shown in Coecke (1995a)
that a quantum-machine-like model can be realized for higher dimensional
quantum entities. Coecke (1995b, 1996) also showed that all the states of
the tensor product can be realized by introducing correlations on the different
component states. This means that we can recover all the nonproduct ray
states of the tensor product Hilbert space by identifying them with a product
state plus a specific correlation for a general quantum entity, and hence that
our solution of the paradox is a possible solution for a general quantum entity.

3. EXPERIMENTAL TESTING OF THE SOLUTION

If we carefully analyze the calculations that show the equivalence of
our model to the quantum model, we can understand why the distinction
between ‘interpreting density states as mixtures’ and ‘interpreting density
states as pure states’ cannot be made experimentally. Indeed, because of the
linearity of the trace used to calculate the quantum transition probabilities,
and because the inner points of the sphere can be written as convex linear
combinations of the surface points, an ontological situation of mixtures must
give the same experimental results as an ontological situation of pure states.

If we could realize experimentally a nonlinear evolution of one of the
subentities that has been brought into an entangled state with the other
subentity as subentity of a joint entity, it would be possible to test our
hypothesis and to detect experimentally whether density states are pure states
or mixtures. Indeed, suppose that a nonlinear evolution of one of the entangled
subentities could be realized. Then, we can distinguish the two possibilities
in the following way. If the density state pW1 of the entangled subentity is a
mixture, then this state evolves while staying a convex linear combination
of the ray states pv1 and p2v1 (referring to the situation of Fig. 3). The nonlinear
evolution causes the ray states pv1 and p2v1 to evolve and this determines the
evolution of the density state pW1, but the correspondence between pW1 and
pv1 and p2v1 remains linear. If the density state pW1 of the entangled subentity
is a pure state, then the nonlinear evolution will make it evolve independent
of the way in which the ray states pv1 and p2v1 evolve. This means that in
general the relation between pW1 and pv1 and p2v1 will not remain that of a
convex linear combination. So we can conclude that for a nonlinear evolution
the change of the density state of an entangled subentity under this evolution
will be different depending on whether it is a mixture or a pure state. This
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difference can be detected experimentally by a proper experimental setup.
We believe that such an experiment would be of great importance for the
problem that we have outlined here.

4. CONSEQUENCES FOR QUANTUM AXIOMATICS

The quantum axiomatic approaches make use of Piron’s representation
theorem where the set of pure states is represented as the set of rays of a
generalized Hilbert space (Piron, 1964, 1976). This theorem has been elabo-
rated and the result of Solèr has made it possible to formulate an axiomatics
that characterizes SQM for real, complex, or quaternionic Hilbert spaces
(Sòler 1995; Aerts and Van Steirteghem, 2000). This standard axiomatic
approach aims to represent pure states by rays of the Hilbert space. If our
proposal is true, an axiomatic system should be constructed that aims at
representing pure states by means of density operators of the Hilbert space.
Within the generalization of the Geneva–Brussels approach that we have
formulated recently, and where the mathematical category is that of state
property systems and their morphisms, such an axiomatic can be developed
(Aerts, 1999a; Aerts et al. 1999a; Van Steirteghem, 2000; Van der Voorde,
2000). In Aerts (1999b) we made a small step in the direction of developing
such an axiomatic system by introducing the concept of ‘atomic pure states’
and treating them as earlier the pure states were treated, aiming to represent
these atomic pure states by the rays of a Hilbert space. We proved that in
this case the covering law remains a problematic axiom in relation to the
description of the joint entity of two subentities (Theorem 18 of Aerts, 1999b).
We are convinced that we would gain a better understanding of the joint
entity problem if a new axiomatic could be worked out aiming to represent
pure states by density operators of a Hilbert space, and we are planning to
engage in such a project in the coming years.
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